

Repurposing of Existing Pipelines for CCUS Service

Ian Matheson, Technical Authority 22nd November 2023

OFFSHORE ENERGIES UK

OFFSHORE DECOMMISSIONING CONFERENCE

kentplc.com

Potential for Repurposing

70% of the existing offshore pipeline length may be suitable for CO_2 transport

Why Repurpose and What are the Challenges?

Does pipeline have sufficient capacity for gaseous/dense phase CO₂ transportation and pressure rating for dense phase?

Is current condition and cleanliness of pipeline adequate?

Are materials and design suitable for repurposing?

Does pipeline comply with contemporary design codes?

Are risk profiles in CO₂ service acceptable?

Does pipeline have sufficient remaining life?

What are requirements for confirmatory hydrotest and pipeline drying?

Dense vs. Gaseous Phase Operation

- Need to avoid unstable multiphase flow in pipeline
- Dense phase required to meet target rates/capacity for CCS clusters
- Repurposing challenges are much more severe for dense phase than gaseous phase
- Offshore, high pressure, gas pipelines are most suitable candidates for repurposing for dense phase CO₂

Industry Guidance for Repurposing for CCUS

PD8010 and DNV ST-F101 give some guidance for CO_2 pipelines, with further guidance in:

- BS ISO 27913
- DNV RP-F104

Material Suitability and Current Condition

- Desirable material properties for dense phase CO₂
 - Low carbon equivalent (CE), good ductility, avoidance of high Y/T
 - Low minimum design temperature
 - Good fracture toughness at low temperature
 - Avoidance of high hardness, sour service rating (ideally)
 - Control of inherent defects
- Confirm achieved properties by review of linepipe and welding specifications, data books, WPQR

- Consider historical corrosion and damage mechanisms (general loss, pitting, cracking etc.)
- Assess safe working pressure of known defects (e.g. ASME B31G, DNV RP-F101)
- Review resistance to future CO₂ damage mechanisms
- Identify requirements for any confirmatory inspections
- Identify debris risk to downstream filters and wells

Fracture Control of CO₂ Pipelines

Fracture Initiation Control

i) Initial source of defects can be:

- independent of fluid e.g. 3rd party interaction, or
- fluid dependent e.g. internal corrosion

ii) Critical Defect Length (leak vs. rupture) is independent of fluid

 however, CO₂ pin-hole leaks may result in very low temperatures with risk of brittle failure

Fracture Propagation Control

iii) Dense phase CO₂ requires significantly higher toughness to arrest a running ductile fracture (c.f. natural gas)

CO₂ Running Ductile Fracture Methodology

- Dense phase CO₂ experiences a long decompression plateau along liquid-vapour line - saturation pressure, P_s
- Resistance is increased by wall thickness, grade and toughness - arrest pressure, P_a
- Running ductile fracture arrests when $P_a > P_s$
- Assessed using Battelle Two-Curve Model
 - \circ Correction factors for CO₂ and high toughness
 - Potentially non-conservative
- Recent re-evaluations of dataset of full-scale CO₂ tests:
 - DNV-RP-F104 (2021): empirical model from CO2Safe-Arrest JIP with applicability limited by test dataset
 - Cosham et al. (2022): modified BTCM with effective crack length of 8 and Wilkowski (1977) correction
- Remains an ongoing research area
- Project specific testing may be required

Non-dimensional Fracture Resistance

CO₂ Running Ductile Fracture Assessment

DNV RP-F104 (2021)

Repurposed pipelines may be outside limits of applicability, and may fall in "Evaluation based on special assessments" due to insufficient toughness

BTCM with Ceff = 8 and Wilkowski 77 correction Wider applicability but not fully validated

Summary

Challenges

- Current condition
- Suitability of materials
- Fracture control and arrest
- Requalification
- Life extension
- Pressure rating

Benefits

- Project enabler
- Reduced CAPEX
- Lower environmental impacts
- Reduced project lead time
- Meeting stewardship expectations

THANK YOU

Contact

Ian Matheson

Technical Authority, Engineering & Consulting, Kent Ian.Matheson@kentplc.com