OIL & GAS DECOMMISSIONING
ONSHORE INFRASTRUCTURE
AND SUPPLY CHAIN

William Brook-Hart
Technical Director - Ports and Marine
CONTENTS

1. Introduction to Ramboll and the decommissioning opportunity
2. The decommissioning process, the role of the onshore supply chain
3. Onshore infrastructure and services required for decommissioning
4. Further onshore supply chain
5. Conclusions
1.0 RAMBOLL

- Engineering & Environmental Consultancy focused on sustainability
- 300 offices in 35 countries
- 13,000 employees
- Oil & Gas
- Ports, Marine & Energy Infrastructure
 - Port infrastructure design
 - Port master planning
- Environment and Health
 - Comparative Assessment
 - Environmental Impact Assessments
 - Waste management
1.1 THE OPPORTUNITY

Offshore decommissioning activity in the UKCS is predicted to increase significantly.

There are various forecasts with figures estimating the value of decommissioning activity of over >£46Bn in the coming decades.

However from our previous research the onshore spend of a decommissioning project is approximately 2–4% of the total project budget.
2.0 THE DECOMMISSIONING PROCESS...SIMPLIFIED

ACTIVE ASSET → CESSATION OF PRODUCTION (CoP) → PREPARATION FOR DECOMMISSIONING → OFFSHORE DECOMMISSIONING

- TRANSPORTATION OF MATERIALS ONSHORE
- RE-USE OF MATERIALS
- RECYCLING / DISPOSAL OF MATERIALS

- DECOMMISSIONING OF MATERIALS ONSHORE
2.1 EARLY ENGAGEMENT

- Onshore supply chain should aim for early project engagement

- ‘Standard’ E&P contracting approaches may not be used
 - Opportunity around new contracting approaches
 - Transition to practice

- Supply chain integration generates:
 - Predictability
 - Health & Safety
 - Lessons learnt and long term improvements
 - Cost savings
2.2 THE ONSHORE SUPPLY CHAIN - OUTLINED

- The onshore supply chain is focused on processing the materials onshore in a safe and efficient manner using an environmentally responsible process.

1. Physical infrastructure: ports/harbours
2. Project management teams including logistics
3. Decommissioning teams and specialist environmental contractors
4. Waste processing facilities for recycling, disposal or re-use
2.3 MATERIAL PROCESSING

- Target specific material weights and dimensions
 - Piece small
 - Piece large
 - Heavy/single lift
 - Re-float and tow

- Evaluate existing onshore infrastructure and target specific decommissioning projects

- Hybrid decommissioning approaches are also being used and partnerships should be considered

- Ports can use publically available information or information from their contacts to establish how a project may be decommissioned.
3.0 ONSHORE SUPPLY CHAIN

- Location/Accessibility
 - Transit costs
- Physical infrastructure
 - Quay/dock capacity
 - Physical containment for contamination prevention
 - Cranes and plant equipment
- Operational teams
 - Appropriate skills for decommissioning onshore
- Material recycling and disposal facilities
 - Transporting the waste to a dedicated facility inland or in a different country
3.1 LOCATION AND ACCESSIBILITY

- **Location**
 - Shortest distance between offshore asset and onshore facility does not always dictate where onshore activities take place.

- **Accessibility**
 - **From water:**
 - Approach channel depth
 - Quay depth/length/capacity
 - **From land:**
 - Road/rail links for transportation of waste
 - Proximity to waste processing facilities

OSPAR Quality Status Report 2010
3.2 PORT/HARBOUR INFRASTRUCTURE

‘Hard’ and ‘Soft’ parameters which ports should consider:

- Hard parameters – considered difficult/expensive to change
 - Approach channel depth
 - Overall laydown area

- Soft parameters – critical (can be sourced)
 - Recycling facilities, waste certification
 - Available skilled workforce
 - Port craneage and mechanical handling equipment (SPMT’s)
3.3 OPERATIONAL AND SITE SERVICES

- Project management
- Health, Safety and Environment
- Logistics
- Layout for optimal material receipt and processing
- Material inventory
- Partner with onshore decommissioning specialists
- Knowledge and experience of materials and connections with recycling facilities

3.4 ENVIRONMENTAL REGULATORY COMPLIANCE

- Materials management in accordance with the waste hierarchy
- Understanding of waste type (e.g. special/hazardous, non-hazardous)
- Duty of Care – operators and licence holders need clarity and assurance down the chain
- Registrations/licences for waste carriers (offshore to onshore and onward transport)
- Transboundary waste shipments
- Waste management licences for storage and treatment
- End of waste scenario: certainty of reuse and suitability for that use
4.0 FURTHER ONSHORE SUPPLY CHAIN

- Collaboration with onshore recycling facilities, equipment refurbishment contractors and waste disposal facilities
- Develop a clear process for handling the material inventory
- Re-use and/or refurbish parts – potential to feed into the Oil & Gas UK ETF Inventory Rationalisation project
- Documentation and auditing of the material routes
5.0 CONCLUSIONS

1. There is a long term opportunity for the onshore supply chain from decommissioning

2. However ports/harbours and the onshore supply chain should develop a balanced and flexible approach which could include;
 - Decommissioning, O&G support, renewables, cruise, leisure, ro-ro etc.

3. Establish a core project management team when targeting decommissioning projects

4. Develop relationships and engage early in bids and client requirements

5. If investment is considered:
 - Identify which port parameters are “easier” (from a cost/technical perspective) to overcome in terms of improving a port’s capability
 - Identify the port parameters that could require significant investment
THANK YOU